0 Fe b 20 07 CONNECTIONS ON A PARABOLIC PRINCIPAL BUNDLE , II

نویسنده

  • INDRANIL BISWAS
چکیده

In [Bi2] we defined connections on a parabolic principal bundle. While connections on usual principal bundles are defined as splittings of the Atiyah exact sequence, it was noted in [Bi2] that the Atiyah exact sequence does not generalize to the parabolic principal bundles. Here we show that a twisted version of the Atiyah exact sequence generalize to the context of parabolic principal bundles. For usual principal bundles, giving a splitting of this twisted Atiyah exact sequence is equivalent to giving a splitting of the Atiyah exact sequence. Connections on a parabolic principal bundle can be defined using the generalization of the twisted Atiyah exact sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Institute for Mathematical Physics Parabolic Geometries and Canonical Cartan Connections Parabolic Geometries and Canonical Cartan Connections

Let G be a (real or complex) semisimple Lie group, whose Lie algebra g is endowed with a so called jkj{grading, i.e. a grading of the form g = g ?k g k , such that no simple factor of G is of type A 1. Let P be the subgroup corresponding to the subalgebra p = g 0 g k. The aim of this paper is to clarify the geometrical meaning of Cartan connections corresponding to the pair (G; P) and to study ...

متن کامل

- qc / 0 40 51 19 v 2 1 1 Fe b 20 05 Automorphism covariant representations of the holonomy - flux ∗ - algebra

We continue the analysis of representations of cylindrical functions and fluxes which are commonly used as elementary variables of Loop Quantum Gravity. We consider an arbitrary principal bundle of a compact connected structure group and, following Sahlmann’s ideas [1], define a holonomy-flux ∗-algebra whose elements correspond to the elementary variables. There exists a natural action of autom...

متن کامل

On Semistable Principal Bundles over a Complex Projective Manifold, Ii

Let (X, ω) be a compact connected Kähler manifold of complex dimension d and EG −→ X a holomorphic principal G–bundle, where G is a connected reductive linear algebraic group defined over C. Let Z(G) denote the center of G. We prove that the following three statements are equivalent: (1) There is a parabolic subgroup P ⊂ G and a holomorphic reduction of structure group EP ⊂ EG to P , such that ...

متن کامل

PARABOLIC GEOMETRIESAND CANONICAL CARTAN CONNECTIONSANDREAS CAP AND HERMANN SCHICHLAbstract

Let G be a (real or complex) semisimple Lie group, whose Lie algebra g is endowed with a so called jkj{grading, i.e. a grading of the form g = g ?k g k , such that no simple factor of G is of type A 1. Let P be the subgroup corresponding to the subalgebra p = g 0 g k. The aim of this paper is to clarify the geometrical meaning of Cartan connections corresponding to the pair (G; P) and to study ...

متن کامل

On the Converse to a Theorem of Atiyah and Bott

Throughout this paper, C denotes a smooth projective curve of genus at least one, G denotes a reductive linear algebraic group over C, and ξ0 is a C ∞ principal G-bundle over C. The space of all (0, 1)-connections on ξ0 is an affine space A = A(ξ0) associated to the infinite dimensional complex vector space H0,1(C; ad ξ0). Following Shatz [6] for the case G = GL(n), Atiyah and Bott [1] defined ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007